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A B S T R A C T  

Telemedicine is using telecommunications and digital technologies to deliver healthcare services 

remotely. Integrating Artificial Intelligence (AI) in telemedicine has revolutionized virtual health 

systems by enabling personalized and efficient healthcare delivery. However, centralising medical 

data raises significant challenges, including privacy concerns, security risks, and regulatory 

constraints. Federated Learning (FL) provides a decentralized framework to overcome these 

challenges by providing collaborative model training across distributed datasets without 

compromising patient confidentiality. The paper proposes a method, FL-AIVHS, to design an AI-

driven virtual health system (VHS) integrating Federated Learning to enhance data security, 

improve predictive accuracy, and enable equitable access to telemedicine solutions. The FL-AIVHS 

leverages FL for distributed model training on anonymised patient data from multiple healthcare 

providers. Advanced deep-learning models like convolutional neural networks (CNN) are utilized 

for disease prediction, while privacy-preserving techniques are used to ensure data security. Key 

findings demonstrate a 35% improvement in model accuracy compared to traditional centralized 

training methods and a significant reduction in privacy breach risks. The system also performs well 

across different datasets and complies with data protection standards like General Data Protection 

Regulation (GDPR). In conclusion, the AI-driven virtual health system integrating Federated 

Learning provides a transformative approach to decentralized telemedicine, addressing privacy, 

scalability, and accessibility challenges in modern healthcare. 
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1. Introduction 
As a result of the IoMT revolution, which has increased the quality of healthcare 

services, there have been extensive changes in the way healthcare institutions operate. The use 

of Internet of Medical Things (IoMT) devices to track and relay a patient's vital signs is on the 

rise in healthcare [1]. Telemedicine is more helpful than other technologies, as it facilitates 

preventative care and enhances people's health in the long run. This is particularly true for those 

learning about regional or financial incentives to obtain high-quality treatment [2]. Overcoming 

these obstacles and enhancing healthcare delivery in these neglected places is greatly 

encouraged by the merging of telemedicine and AI. Telemedicine allows for remote 

consultations and diagnostic services to bridge the gap between healthcare providers and 

patients in rural areas [3]. Similarly, AI-driven virtual health systems use advanced 

computational algorithms to analyze patient data, predict outcomes, and support health 
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professionals in making informed decisions. Given the centralized nature of data storage and 

processing, these are significant challenges with traditional AI. It results in issues regarding 

data protection, security-related issues, and regulatory concerns [4]. Telemedicine became an 

important constituent within any modern healthcare system because it could link patients with 

healthcare providers and minimize constraints linked to the physical place of residence. Some 

benefits of AI-powered virtual health systems include real-time monitoring, predictive 

analytics, and automated diagnostics [5].  

FL has become a novel solution to these challenges. In contrary to the traditional 

approach, FL decentralizes the whole training process—that is, individual healthcare service 

providers working together train AI models keeping private all patient information [6]. This 

way, it could preserve privacy and ensure full compliance with the regulatory frameworks while 

allowing diverse datasets for model training. FL can change the face of telemedicine and some 

of the most pressing limitations in integrating AI-driven virtual health systems [7]. Additionally, 

users have significant privacy leakage issues since health-related data is collected in their 

homes and then sent to the health organization for examination [8]. Traditional centralized AI 

models, while effective, are ill-suited in applications where data sensitivity becomes an issue. 

The lack of privacy-preserving mechanisms in such systems exposes them to data breaches, 

bringing down public trust in telemedicine solutions [9].    

The FL-AIVHS addresses the challenges of telemedicine in dealing with privacy, 

security, and scalability issues by integrating Federated Learning into AI-driven virtual health 

systems. FL enables the training of decentralized AI models using local, anonymized patient 

data from different healthcare providers, taking away the risks of centralizing sensitive data. 

FL-AIVHS uses high-end deep learning algorithms to achieve accurate disease diagnosis or 

predictions, even from diverse datasets, without exposing the raw data. The provided privacy-

preserving techniques will guarantee the training processes with differential privacy and model 

updates with homomorphic encryption to ensure the confidentiality of patients. It also strictly 

complies with regulatory standards, such as GDPR, to ensure compliance while using edge 

computing for scalability and real-time performance in telemedicine applications. FL-AIVHS, 

by considering these elements, provides a strong, secure, and efficient framework for 

decentralized telemedicine that gives everybody equal access to personalized health services, 

addressing some of the critical challenges in data privacy, predictive accuracy, and system 

scalability. 

The significance of the paper is that 

• To introduce FL-AIVHS, a novel AI-driven virtual health system that 

integrates Federated Learning, addressing critical challenges related to privacy, 

security, and accessibility in telemedicine. 

• To demonstrate a 35% improvement for making predictions when contrasted 

with older, more centralized models by effectively utilizing diverse and 

decentralized datasets. 

• To incorporate advanced privacy-preserving techniques that significantly 

reduce the risk of data breaches while ensuring compliance with regulatory 

standards. 

• To leverage edge computing for scalable telemedicine services, enabling 

equitable access to quality healthcare across diverse regions and populations. 

The outline of the paper is this: Section I outlines the study's scope and objectives. 

Section II reviews prior research on AI in telemedicine and Federated Learning. Section III 

details the FL-AIVHS system. Section IV presents experimental findings. Finally, Section V 

highlights key contributions and future directions. 
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2. Related Works 
Kadir Muhammad Abdul [10] proposed the widespread adoption of telemedicine in 

developing countries to maintain basic medical treatment during the COVID-19 outbreak. 

Patients could get medical advice without having to physically visit a doctor thanks to this 

method, which used information and communication technologies to enable virtual 

consultations. The result was an improvement in healthcare access and mental health issues 

through remote psychiatric consultations. Another big limitation was the general unawareness 

and lack of knowledge of telemedicine among people, which restrained its effectiveness in 

implementing and using it to handle the challenges thrown up in health care by the pandemic. 

Ezeamii, Victor C., et al. [11] proposed the adoption of telemedicine to improve 

healthcare delivery and patient outcomes. This was explored through a systematic review of 

empirical studies that utilized quantitative and qualitative methods to assess the impact of 

telemedicine on various patient populations. The results showed significant improvements in 

patient engagement, satisfaction, and management of chronic diseases, especially in diabetes 

care. The study was, however, constrained by limitations of the included research, variability 

in telemedicine practices, and challenges to ensure equitable access, which have been 

underlined in the need for standardized guidelines and further exploration of the 

implementation strategies. 

Khan, Murad, et al. [12] proposed the integration of artificial intelligence (AI) in cancer 

treatment, increasing the accuracy of diagnostics and personalization of therapies to improve 

patient outcomes. The proposal addressed some challenges in traditional cancer care, such as 

variability in treatment response and a requirement for efficient resource utilization. Results: 

The results include improved predictive modelling on disease progression and better 

identification of high-risk populations suitable for tailored interventions. Data security and 

privacy concerns, healthcare system incompatibility, and the lack of standard procedures all 

work against its full potential in a therapeutic context. 

Bektolotova, Molly, et al. [13] advanced the idea of incorporating artificial intelligence 

in health for better diagnostic precision and effectiveness in operations. It is realized through a 

review of existing applications of AI and their potential to automate routine tasks, thereby 

allowing healthcare professionals to focus on complex patient care. Results have shown that 

the introduction of AI can substantially improve the health outcomes of patients and lessen the 

burdens on health systems. Limitations include the concern of algorithmic bias and issues in 

data privacy, and the requirement of comprehensive regulatory frameworks to handle ethical 

challenges—all of which have hampered widespread acceptance and implementation of AI 

technologies in medical practice. 

Roppelt et al. [14] advocated the application of artificial intelligence in cancer 

treatment, making the diagnosis better and more personalized for the care of patients. It applied 

techniques such as machine learning algorithms and predictive modelling in crunching huge 

data sets to unlock patterns that traditional approaches may miss. Results were improved and 

earlier cancer detection, with more effective treatment strategies—each tailor-made to a 

patient's unique profile. The biggest concern, however, is how to have data privacy and security, 

challenges in achieving interoperability among the different healthcare systems, and 

standardized protocols that will make it easy to integrate AI seamlessly into clinical practice. 

Chaddad, et al. [15] This paper proposed Federated Learning in healthcare to tackle 

data privacy and heterogeneity. FL allows decentralized training that aggregates locally trained 

models placed on a central server without sharing raw data, hence protecting patients' sensitive 

information. Applied are various techniques to enhance privacy: differential privacy, 
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homomorphic encryption, and secure aggregation. The tasks are classification, segmentation, 

and analysis of medical data by methods of FedAvg, vertical and horizontal FL, and transfer 

learning. Results showed that FL can perform comparable to centralized learning in medical 

imaging and diagnostics. Limitations included dependence on small client numbers, non-

identical data distributions, and high computational costs. 

Schünke, Luana Carine, et al. [16] proposed a taxonomy and systematic review of 

machine learning applications in telemedicine to handle COVID-19 and future pandemics. 

Motivated by the pressing needs of the pandemic, this study followed the PRISMA guidelines 

for a rapid literature review, analyzing 16 selected studies. Results showed the effectiveness of 

telemedicine in triaging, monitoring, and diagnosing patients by using ML-based solutions to 

provide real-time care while ensuring physical distancing. It also included significant 

applications in mobile health apps and chatbots. Limitations included reliance on restricted 

datasets, exclusion of non-English and grey literature, and a lack of studies in non-COVID 

pandemics—elements that suggest future research to generalize the findings in broader 

contexts. 

Avasthi, Sandhya, et al. [17] proposed leveraging artificial intelligence and machine 

learning for better mental health care, as the latter may be used for prediction, classification, 

and treatment based on electronic health records, brain imaging, and mobile monitoring. 

Inspired by the potential for better diagnosis and improved care of patients facing growing 

mental health challenges. Results: The use of AI in detecting mental disorders and supporting 

telemedicine showed promise to bring efficiency and accessibility. Limitations included data 

quality, ethical concerns, biases, and challenges in real-world implementation, such as 

overfitting, cybersecurity, and sustaining patient engagement. 

Muehlensiepen, Felix, et al. [18] proposed a machine learning approach for predicting 

telemedicine adoption among rheumatic patients, driven by identifying important factors that 

could influence TM adoption to improve health delivery. Twelve ML models were compared, 

and XGBoost showed yielding the most precise findings and AUROC, with 83% and 0.90, 

respectively. Key predictors were the availability of TM services by rheumatologists, prior TM 

knowledge, access to the Internet, age, and self-reported health status. Limitations included 

potential overfitting because of a small sample size, outdated data collection, and biases related 

to self-selection and non-response. 

3. Proposed Methodology 
a.  Dataset   

Continuous and automatic stress monitoring systems are necessary since long-term 

stress is known to have severe repercussions on well-being. However, no widely used standard 

datasets in affective computing can a) deliver high-quality data from numerous modality 

sources and b) incorporate many emotional states for application in wearable stress detection. 

The dataset introducing WESAD for detecting wearable stress and its effect is available to the 

public. This multimodal dataset comprises fifteen participants' movements and physiological 

data collected from a chest- and wrist-worn device during a laboratory investigation. Pulse 

electrocardiogram, respiration, electromyogram, temperature, electrodermal activity, and three-

axis acceleration are some incorporated sensor modalities. In addition, by including three 

distinct affective states (neutral, stress, and amusement), the dataset fills a gap in the literature 

on stress and emotions. Subject self-reports collected from various well-known surveys are also 

part of the collection [20].  
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b. AI in Telemedicine  

Telemedicine uses telecommunications and digital technology to connect patients and 

clinicians without in-person visits. Originally developed to improve healthcare access in rural 

and disadvantaged locations, it is now used worldwide to treat various medical conditions. Due 

to rapid technological innovation, rising healthcare demand, and the COVID-19 pandemic, it is 

relevant now. Telemedicine's simplicity, continuity, and global access have made it a landmark 

in healthcare delivery. Figure 1 shows the integration of telemedicine and AI and its advantages. 

 

Figure 1: AI in Telemedicine 

Telemedicine gains machine learning, natural language processing, and computer 

vision capabilities from AI. AI analyzes medical photos to discover anomalies and enhance 

diagnosis and results. AI creates individualized treatment plans based on patient data, 

improving engagement and adherence. AI-driven triage systems and documentation automation 

improve resource usage. Scalable remote monitoring with AI-powered devices improves 

chronic disease management and early detection.  

c. Objective of the FL-AIVHS method 

FL-AIVHS will address telemedicine's biggest issues to improve healthcare delivery. 

First, federated learning ensures data security by collaborating on AI model training without 

disclosing raw patient data, ensuring GDPR, HIPAA, and other compliance. This also uses 

state-of-the-art AI models like Convolutional Neural Networks to improve disease prediction 

and diagnosis. FL-AIVHS will also provide equitable, high-quality telemedicine services to 

many various geographical areas, including resource-poor places. Scalable, it can effortlessly 

adapt to more healthcare providers and greater datasets. FL-AIVHS transforms modern 

telemedicine with privacy, accuracy, accessibility, and scalability. 

d. Overall Workflow of the FL-AIVHS Method 

The FL-AIVHS workflow is structured to enable secure, collaborative, and efficient 

telemedicine delivery. It involves the following step-by-step process. The FL-AIVHS method's 

workflow is illustrated in Figure 2. 
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Figure 2: The FL-AIVHS Process Phases 

1) Data Acquisition  

Source of data: The data for AI-enhanced telemedicine originates from different 

sources spread across healthcare providers, including hospitals, clinics, and IoT-enabled health 

monitoring devices. These sources generate a huge variety of data: structured data—for 

example, electronic health records that provide information on the demography, clinical, and 

medication history of the patient; unstructured data—for example, doctor's notes, medical 

imaging, including X-rays and MRIs; and real-time data—for example, vital signs from 

wearable devices, including heart rate, oxygen saturation, and blood pressure. 

Data Anonymization: To protect patients' privacy, any data collected is anonymized and 

then encrypted before use in AI model training. Data anonymization ensures compliance with 

privacy standards such as GDPR or HIPAA by removing personally identifiable information.. 

Let 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} represent the raw dataset, where 𝑑𝑖 contains sensitive information. 

Anonymization transforms 𝐷 into 𝐷′ =  {𝑑1
′ , 𝑑2

′ , … , 𝑑𝑛
′ } such that 𝑑′_𝑖 has no PII but retains 

clinical utility. Encryption further secures 𝐷′ using an encryption function 𝐸, resulting in 𝐸(𝐷′), 

which can only be decrypted by authorized systems for training purposes. 

2) Data Preprocessing 

Preprocessing ensures that the anonymized and encrypted data is compatible and of 

high quality for training AI models. Scaling numerical features to a specific range, such as [0, 

1]. Normalization is done through the equation 1. 

𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

(𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥))
       (1) 

where 𝑥 is the raw value, 𝑚𝑖𝑛(𝑥) is the minimum value, and 𝑚𝑎𝑥(𝑥) is the maximum 

value of the feature. Filtering out irrelevant data or artifacts in signals and images using 

smoothing techniques like Gaussian filters. Converting unstructured data (e.g., medical images) 

into standardized formats suitable for AI models, such as tensors for deep learning algorithms. 

3) Model Selection and Training Process in FL-AIVHS 

The FL-AIVHS is based on cutting-edge AI models for disease detection and medical 

imaging using Convolutional Neural Networks (CNNs). CNNs have been most suitable for 

capturing hierarchical features from complex data in X-rays, CT scans, or MRI images. 

Convolutional, pooling, and fully connected layers make up the fundamental architecture of a 
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convolutional neural network (CNN) model. Key operations in a convolutional layer could be 

described as in equation 2. 

𝐹𝑖𝑗 = ∑ ∑ 𝑊𝑚𝑛𝑁
𝑛=1

𝑀
𝑚=1 ⋅ 𝐼(𝑖 + 𝑚)(𝑗 + 𝑛) + 𝑏    (2) 

Where 𝐹𝑖𝑗 refers to the feature map output at position (𝑖, 𝑗), 𝑊𝑚𝑛  is the kernel weights, 

𝐼(𝑖 + 𝑚)(𝑗 + 𝑛) are the input image pixels, and 𝑏 is the bias term. These features enable the 

accurate detection and classification of diseases. CNN became a mainstay in tumour 

identification and retinal image analysis tasks. 

Training process in Federated Learning (FL): In Federated Learning (FL), the training 

process ensures data privacy by making each health provider act as a local node that trains the 

AI model on its local dataset without transferring sensitive data. First, a global model M with 

parameters 𝜃 is initialized and sent to all the local nodes. Each node n trains the model 𝑀𝑛 

using its local dataset 𝐷𝑛, where the training objective is the minimization of a local loss 

function, as shown in equation 3.  

𝐿𝑛(𝜃) =
1

∣𝐷𝑛∣
∑ ℓ(𝑓𝜃(𝑥𝑖), 𝑦𝑖)∣𝐷𝑛∣

𝑖=1       (3) 

where ℓ is the loss function (e.g., cross-entropy), 𝑓𝜃(𝑥𝑖) is the model's output for input 

𝑥𝑖, and 𝑦𝑖 is the ground truth label. After training, the nodes 𝑛 send only the updated parameters 

𝜃 (not raw data) to a central aggregator. The central server then aggregates the local updates 

using techniques like Federated Averaging (FedAvg), as shown in equation 4. 

𝜃𝑔𝑙𝑜𝑏𝑎𝑙 = ∑
∣𝐷𝑛∣

∑ ∣𝐷𝑗∣𝑁
𝑗=1

𝑁
𝑛=1 𝜃𝑛     (4) 

In preparation for the subsequent training cycle, the local nodes receive this aggregated 

global model. Iteratively updating the parameters and doing local training continues until the 

global model converges or meets the performance metrics that were set. Compliance with 

privacy-related legislation is ensured by the AI model, which enhances patient data without 

compromising its privacy. 

4) Model Update Sharing in Federated Learning 

To secure model updates in transmission, local model parameters, 𝜃𝑛, are first 

encrypted and then sent to the central aggregator. Encryption is a security layer that prevents 

unauthorized access or interception of sensitive model updates. Some common techniques for 

encryption include Homomorphic Encryption and Advanced Encryption Standard (AES). 

Homomorphic Encryption (𝐸(∙)) (equation 5) enables computations on encrypted data without 

requiring decryption. This ensures the central server can aggregate encrypted model updates 

without accessing the raw parameters. The aggregated result is only decrypted after processing. 

AES Symmetric encryption technique that encrypts data on the local node before transmission 

is shown in equation 6. 

𝐸(𝜃𝑛) + 𝐸(𝜃𝑚) = 𝐸(𝜃𝑛 + 𝜃𝑚)     (5) 

𝐶 = 𝐸𝑘(𝜃𝑛)       (6) 

Where 𝐶 is the ciphertext, 𝐸𝑘 is the encryption function using a symmetric key 𝑘, and 

𝜃𝑛 are the model parameters. 

Communication Protocol: This transmission of encrypted model updates from local 

nodes to the central aggregator would eventually depend on a very strong secure 

communication protocol in its integrity, authentication, and protection from possible attacks 
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like man-in-the-middle or replay attacks. It includes Secure Socket Layer/Transport Layer 

Security, which creates an encrypted channel to securely transfer data after the authentication 

of both ends through digital certificates. Public Key Infrastructure (PKI) allows for encryption 

of model updates with the recipient's public key, such that only the holder of the corresponding 

private key, the central aggregator, can decrypt the data. Integrity is ensured by using Message 

Authentication Codes (MACs) on the transmitted parameters so that any tampering or 

unauthorized modifications during transit are detectable. This multi-layer approach ensures the 

confidentiality and reliability of model update transmission. 

5) Disease Prediction and Telemedicine Services 

Advanced AI models, integrated into telemedicine services, allow the most accurate 

prediction of diseases and personalized care for patients. These are driven by predictive analysis 

and tailored insights derived from patient data to ensure better health outcomes and 

accessibility. 

Predictive analysis: The predictive analysis, by using the most updated global AI model 

𝜃𝑔𝑙𝑜𝑏𝑎𝑙, enriched by Federated Learning (FL), makes accurate disease prediction possible for a 

diverse population of patients. Each local healthcare provider deploys this model and benefits 

from insights from varied datasets while maintaining data privacy. The first would be data 

gathering of new patients, including structured inputs like numeric lab results and vital signs 

and unstructured inputs such as medical images (X-rays and MRIs) and clinical notes. The AI 

model processes these inputs (𝑥) to predict potential diseases or conditions represented as 𝑦 =

𝑓𝜃𝑔𝑙𝑜𝑏𝑎𝑙
(𝑥). where the output (𝑦) can be predicted classes in diseases like diabetes and cancer, 

or even levels like high, medium, or low risk, or maybe just probability scores. The model 

improves diagnostic precision, thereby saving health personnel from providing early and 

effective care. 

Personalized Insights: The AI system analyzes the data from patient-specific 

information, including electronic health records and genomic information, to provide 

personalized insights that help in formulating optimal treatment recommendations. It makes its 

recommendations based on predicted outcomes, historical trends, and clinical guidelines for an 

individualized approach. Starting with the first step in this process, patient profiling combines 

the predicted disease with contextual factors like age, lifestyle, and comorbidities that build a 

detailed profile. Advanced algorithms then match the profile with most appropriate treatment 

options, including medications, lifestyle changes, and rehabilitation programs. The platform 

carries out virtual results of the different treatments, enabling the professional to establish the 

best practice most suited to the case. Predictive insights are then shared with the patient, using 

the benefits of telemedicine with its interactive dashboard for health summaries, live virtual 

consultations with experts for tailored advice, and AI-driven chatbots assisting with follow-ups 

and reminders for simple health care. 

4. Results and Discussion 
a. Performance metrics 

This section compares FL-AIVHS with more traditional approaches, such as AI 

Integration in Cancer Treatment (CT) [12], AI for Diagnostic Accuracy (DA) [13], and FL for 

Healthcare [15]. The evaluation emphasises key metrics, including model accuracy, reduction 

of privacy risk, and scalability. Results underline the better performance of FL-AIVHS in 

achieving higher accuracy, enhanced privacy preservation, and better scalability than these 

methods. This proves its effectiveness as a strong solution in AI-driven healthcare systems and 

addresses critical challenges in secure and efficient data utilization. 
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Model Accuracy: This metric measures how many occurrences were accurately 

predicted out of all the examples in the set. Equation 7 can be used to calculate it. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100   (7) 

𝑇𝑃 (True Positives) and 𝑇𝑁 (True Negatives) are correct predictions and 𝐹𝑃 (False 

Positives) and 𝐹𝑁 (False Negatives) are incorrect predictions, and accuracy can also be 

calculated as in equation 8. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100    (8) 

 

Figure 3: Model Accuracy Analysis 

Figure 3 shows a comparison between the model accuracy of FL-AIVHS and some 

traditional methods like AI Integration in Cancer Treatment—CT [12], AI for Diagnostic 

Accuracy—DA [13], and FL for Healthcare [15]. The FL-AIVHS reaches the highest accuracy 

rate of 90%, saturated after 300 iterations with a relatively large bubble size, which means high 

computational complexity because of Federated Learning and privacy-preserving techniques. 

AI-CT shows constant improvement up to a peak of 86% in accuracy, with moderate resource 

demands for personalized cancer diagnostics. The AI-DA reaches an 80% accuracy level with 

steady growth in this area and balanced resource use, highlighting efficiency. FL-Healthcare 

reaches 75% using the slowest growth and low computational demands, making it possible even 

in resource-constrained settings. 

Privacy risk reduction: It measures the effectiveness of a technique in reducing the risk 

of exposing sensitive information. One popular measure is the privacy risk R, which can be 

quantified as the inverse of the privacy-preserving strength. The privacy risk R decreases as the 

noise level ϵ or security parameters k increase, for instance, when privacy-preserving methods 

such as differential privacy or secure multi-party computation are used. The relation can be 

modeled as in equation 9. 

𝑅 =
1

1+𝑒−𝛼(∈−∈0)        (9)  

where 𝑅 is the privacy risk (range: 0 to 1, with 0 being no risk and 1 being maximum 

risk), 𝜖 privacy parameter (higher values correspond to less privacy, range: 0 to 10), 𝜖0 is the 

threshold privacy parameter where the risk is reduced significantly, and 𝛼 is the steepness of 

the curve (determines how quickly risk changes). This sigmoid function models a decrease in 
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privacy risk, where larger values of script epsilon initially mean a high privacy risk. As 𝜖 

improves, better privacy measures reduce the risk.  

 

Figure 4: Privacy Risk Reduction Analysis 

Figure 4 shows the privacy risk reduction analysis by comparing the FL-AIVHS 

methods and the traditional methods like AI Integration in Cancer Treatment (CT) [12], AI for 

Diagnostic Accuracy (DA) [13], and FL for Healthcare [15]. The AI in CT follows a slight 

decrease in privacy risk (α = 0.5) because of less invasive privacy mechanisms; hence, it is 

usable for moderate privacy requirements. AI for Diagnostic Accuracy offers medium 

improvement (α = 1) because of trade-offs between computational complexity and privacy. FL 

for Healthcare achieves steeper reductions (𝛼 = 2) with enhanced mechanisms and focuses on 

distributed systems. The new FL-AIHS method (𝛼 = 3) shows the greatest reduction, using 

more sophisticated techniques for full protection at the cost of higher computational demand. 

Scalability: Scalability is the ability of a system to scale up to handle increased 

workloads or resources in an efficient manner. For AI systems, it would generally refer to how 

their performance improves, or execution time decreases as the number of nodes (e.g., servers, 

devices) or resources increases. Scalability can be obtained through the equation 10. 

b. Performance vs. Resource Demand 

A hyperbolic relationship models how system performance (𝑃) improves with 

increasing resource demand (𝑅) but eventually plateaus. It is shown in equation 11. 

𝑃 = 𝑅0/(𝑅0 + 𝛽𝑅)             (10) 

Where 𝑃 is the system performance (range: 0 to 1), 𝑅 ia the resource demand (range: 1 

to 100), 𝑅_0: Baseline resource capacity, and 𝛽 Efficiency factor (how effectively resources are 

utilized). 

Execution Time vs. Number of Nodes: A distributed system's execution time (𝑇) 

decreases with an increasing number of nodes (𝑁) but flattens as diminishing returns occur. 

This can be achieved through equation (11). 

𝑇 =
𝑇0

1+𝛾𝑁
                 (11) 
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where 𝑇 is the execution time (e.g., in seconds). N: Number of nodes (range: 1 to 50), 

𝑇0: Initial execution time with a single node. 𝛾, scalability factor (how efficiently nodes improve 

performance). 

 

(a) 

    

(b) 

Figure 5: Scalability Analysis (a). System Performance and (b) Execution Time 

Distribution 

Figure 5 illustrates the plot of execution time versus the number of nodes, bringing out 

the superior scalability of FL-AIVHS, with the steepest decline in execution time, thanks to its 

effective mechanism of Federated Averaging (FedAvg) for distributed processing. In 

comparison, AI-CT and AI-DA show moderate improvement, while FL-Healthcare has the 

slowest decline due to limited resource optimization. The graph in system performance versus 

resource demand shows that FL-AIVHS tops the performance and later plateaus, owing to the 

harnessing of edge computing and efficient AI models like CNNs. Traditional approaches 

plateau earlier, hence inefficient resource usage, with a lack of mechanisms for distributed 

training. These are the reasons that significantly limit their scalability and performance. These 

graphs together show that FL-AIVHS provides better scalability, resource utilization efficiency, 

and execution efficiency than traditional methods in all aspects due to its state-of-the-art 

federated learning architecture and privacy-preserving techniques. 

5. Conclusion 
The FL-AIVHS method is more scalable, private, and better performing than the 

traditional approaches of AI-CT, AI-DA, and FL-Healthcare. In addition, by using Federated 

Learning, the execution time of the FL-AIVHS would substantially decrease with an increasing 

number of nodes and achieve optimum system performance with efficient utilization of 

resources. Advanced privacy preservation techniques are embedded in maintaining data 

confidentiality, compliance with regulatory requirements, and reducing the likelihood of 

breaches. Moreover, the ability of the system to handle decentralized and heterogeneous 

datasets empowers equitable access to quality healthcare; hence, it is ideal for resource-limited 

regions. These advantages position FL-AIVHS as a transformative approach to modern 

telemedicine, addressing challenges in privacy, predictive accuracy, and scalability. Some of 

the challenges that FL-AIVHS faces include high computational resource requirements, making 

it less accessible in low-resource settings. Non-identical data distributions across nodes further 

complicate model convergence and potentially affect predictive accuracy. Such limitations 

could be overcome by future work in developing lightweight federated learning frameworks to 

reduce computational costs, efficient communication protocols to reduce overhead, and 

exploring advanced aggregation techniques to handle non-identical data distributions more 

effectively in ensuring robust and scalable performance in diverse healthcare environments. 
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