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A B S T R A C T  

Disease modelling has advanced significantly when computational methods and molecular data are 

used. For prediction accuracy and interpretability, this initiative proposes to create a hybrid 

molecular nano framework for disease modelling employing neuro-symbolic machine learning, 

with Graph Attention Networks (GAT) as the central method. The GAT depicts molecules as 

graphs, and the technique interactively assigns focus to atom-bond interactions to extract structural 

and relational properties.  These traits' anticipated disease-relevant relationships and biological 

objectives are paired with symbolic reasoning, which uses molecular similarity metrics (such as 

Tanimoto coefficients) and 3D structure data. One of the main discoveries is the successful use of 

GAT to capture necessary chemical substructures and achieve better prediction performance than 

conventional models. The hybrid framework showed excellent interpretability, effectively 

connecting biological targets like CYP2D6 and HERG to molecular patterns and offering insights 

into disease processes. Finally, combining GAT with symbolic reasoning reveals a viable strategy 

for molecular-based illness modelling by striking a balance between interpretability and prediction 

accuracy. 

 

 

Keywords:  Disease modelling, Neuro-symbolic machine learning, Molecular similarity, 

interpretability, Graph Attention Networks. 

1. Introduction 
Integrating disease modelling, molecular data analysis, and computational approaches 

has converted to the biomedical research area. Over the last few decades, molecular modelling, 

artificial intelligence, and machine learning developments have created new opportunities to 

comprehend the intricate connections between disease manifestations and molecular structures 

[1, 2]. When incorporated into comprehensive mathematical algorithms, the extensive 

molecular datasets that academics presently are entitled to—such as genomic, proteomic, and 

structural data—can offer novel knowledge of disease leads, therapeutic targets, and prospects 

for solutions [3, 4]. However, despite this progress, numerous challenges exist to overcome to 

develop exact and comprehensible prediction models.  

Molecular methods must accurately represent and analyse their physical and relational 

features [5]. Traditional computational techniques frequently fail when overcoming the 

disparity between comprehension and predictive accuracy. Neural networks work based on 

deep learning, and other black-box algorithms have excellent accuracy in forecasting. Still, their 

lack of transparency prevents them from being widely used in crucial areas like personalised 
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healthcare and drug development [6]. In contrast, readability is offered by governed-by-rules, 

symbolic thinking models. Still, they frequently fail to provide the capacity and versatility 

required to verify massive amounts of molecular information [7]. By bringing forward a hybrid 

molecular nano-framework that integrates Graph Attention Networks (GAT) with neuro-

symbolic machine learning, the present research aims to overcome these constraints. 

Since complex compounds can be viewed as networks with elements as vertices and 

molecular connections as borders, Graph Attention Networks (GATs) have applications for 

simulating molecular mechanisms [8]. When paired with symbolic logic, which uses 3D 

structure data and similarity parameters (such as Tanimoto coefficients), GATs can more 

accurately and interpretably forecast correlations. 

The main contributions of this study: 

✓ The hybrid molecular nano-framework Development of a Hybrid Framework 

successfully balances interpretability and prediction accuracy in disease 

modelling by fusing GAT with symbolic reasoning. 

✓ A better understanding of molecule-disease relationships is possible because 

of the enhanced molecular representation GATs model, which incorporates 

crucial chemical substructures and relational patterns. 

✓ By creating significant relationships among molecular patterns and biological 

targets like CYP2D6 and HERG, biological insight and interpretability provide 

insights into the processes underlying illness. 

The rest of the paper is as follows: The current state of work is given in Section 2, 

which includes an explanation of the investigation gap. The suggested approach is explained in 

Section 3, with the hybrid framework's structure and its integration of GAT and symbolic 

analysis. The study layout, datasets, and measurement evaluations are laid out in Section 4. The 

primary findings are addressed in Section 5, which compares the outcomes with the most 

advanced models and emphasises how comprehensible predictions are. A review of the 

contributions, possible uses, and future study targets can be found in Section 6, which brings 

the investigation to a close. 

2. Literature Survey 
S. Xia et al.[9]The research involves innovative algorithms for computation, including 

deep neural networks for predicting estimated and exploratory molecular characteristics 

through atomic mechanics-optimised patterns, delta neural network function scores for protein-

ligand connecting as well as simulated screening, and AlphaSpace for pocket-guided rational 

development focusing on protein-protein interactions. The information sets incorporate actual 

molecule property data, large drug libraries, and protein-protein interaction architectures. The 

FDA-approved kinase inhibitor Erlotinib was used as a successful validation case. The findings 

showed increased efficiency in virtual screening, greater accuracy in docking scores, and 

trustworthy predictions of molecular features. Limitations still exist, though, such as difficulties 

with model generalizability across many molecular systems, precision in predicting new 

interactions, and high computing resource requirements for large-scale molecular simulations. 

J. Pinto et al.[10] Employing the ADAM optimal method, probabilistic normalisation, 

and semidirect sensibility formulas for training, the provided analytical architecture integrates 

molecular models with deep neural networks in compliance with the SBML standard. 

Specifically, the P58IPK signal transduction model, the yeast glycolytic oscillations approach, 

and the bacteria Escherichia coli alanine synthesising model are among the publicly accessible 

SBML models in the collection. The findings demonstrate better efficiency and versatility in 

the combination of model simulations, allowing more thorough analysis and interaction with 
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current SBML databases. However, drawbacks include difficulties scaling hybrid models for 

highly complex biological systems and possible computing costs. 

N. A. Aljarallah et al.[11]  methods for searching through online databases and rigorous 

selection standards, this research thoroughly investigates machine learning (ML) algorithms for 

neurological medical diagnosis that depend on genes and chemical processes. Data collection 

encompasses 24 meticulously selected research that evaluates techniques and outcomes while 

concentrating on different neurological illnesses. The research results demonstrate that efficient 

predictive models may implement customised therapies, employing chromosomal and 

molecular information to enhance treatment plans and diagnostic precision. Nevertheless, there 

are still issues with model scalability, generalisation, and integration into healthcare 

environments. 

C. Stavrogiannis et al. [12] The present research predicts the density and the thermal 

conductivity of Ar, Kr, Xe, O, and N in a range of liquid states, encompassing gas, liquid, and 

supersonic circumstances, using molecular dynamics (MD) models and nine machine learning 

(ML) techniques. The dataset is expanded using MD simulations to encompass a wider 

pressure-temperature (P-T) range after being generated through experimental research sources. 

Results show excellent accuracy in predicting, and tree-based machine learning architectures 

outperform conventional trials and computationally demanding simulations. Fortunately, 

drawbacks include the need for superior input information to provide accurate forecasts and the 

possibility of performance declines under challenging conditions. 

H. Narayanan et al. [13] To enhance chromatography capturing procedures, this paper 

provides several hybrid designs that align across a "degree of hybridisation" axis and combine 

data-driven and mechanistic techniques. The collection comprises chromatography procedure 

data from experiments evaluated at various inversion degrees. The findings demonstrate that 

mixed approaches perform better in terms of accuracy of predictions, extension skills, process 

comprehension, and practical application than strictly physiological or data-driven approaches.  

Zhao et al.[14] Employing Hybrid Units (HUs) as gateways for adaptable and effective 

transfer of data, this research suggests a Hybrid Neural Network (HNN) structure that combines 

artificial neural networks, or ANNs, with spike neural networks (SNNs). The information set 

contains multidisciplinary data for tasks, including logical systems, modulation, and composite 

sensing. The outcomes demonstrate intense recursive learning, enhanced energy efficiency, 

excellent tracking accuracy, and comprehensible multimodal reasoning.  

Rivas et al.[15] the prediction of links in knowledge graphs (KGs), this research 

proposes a hybrid neuro-symbolic system that integrates Knowledge Graph Embedding (KGE) 

algorithms with symbolic reasoning (through logical databases). The results indicate that 

employing conceptual deduction to make implicit linkages visible improves accuracy in 

forecasting across numerous KGE models. However, limitations include relying on the 

accuracy of original symbolic knowledge representation, scalability problems with enormous 

KGs, and increased computing complexity throughout inference. 

Mienye et al.[16] GANs for image production, transformers for computer vision and 

natural language processing applications, and GNNs for organised information analysis are 

some techniques used in contemporary profound learning advancements. Several interesting 

statistics include QM9 for chemical attributes, Common Crawl for natural language processing, 

and Image Net for visual analysis. Through deep reinforcement learning, state-of-the-art 

outcomes have been attained, including 90%+ accuracy in picture categorisation and Superman 

accomplishments in strategy games. Further limitations include the difficulty of extrapolating 
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throughout multiple fields, high processing needs, and information confidentiality problems 

with federated training. 

 

3. Proposed System 
a. System Overview 

The process of preliminary processing using SMILE includes noise elimination, edge 

weight assignment, feature standardisation, and graph representation for molecular data. Then, 

using single-head, multi-head, and hybrid attention networks for feature learning, Feature 

Extraction finds node and edge-level features fed into the GAT (Graph Attention Network) 

module. After making predictions, performance is evaluated using metrics such as RMSE and 

F1 Score to determine accuracy. The results are further examined using regression and graph-

level metrics for more in-depth understanding. 

 

Figure 1: Hybrid Molecular Nano Frameworks for Disease Modeling Using GAT 

Algorithm 

1. Graph Data Pre-processing  

The molecules of chemicals are represented as graph databases, where nodes (V) stand 

for atoms (such as carbon, nitrogen, and oxygen) and edges (E) for bonds between atoms (such 

as single, double, and aromatic). On the other hand, the structure of adjacency (A) documents 

the atomic connectivity and bond types inside the molecule. In addition, pair-specific 

information—such as chemical metrics of similarity like TanimotoCombo and 

Tanimoto_cdk_Extended and biological targets like CYP2D6 and HERG—provides essential 

context for understanding molecular interactions. These attributes are pre-processed and 

standardised to generate precise graph attention compatible with Graph Attention Network 

(GAT) systems. 
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Figure 2: Data Pre-Processing Flowchart using SMILE 

Step 1: Molecule Graph Representation: SMILES strings (curated_smiles_molecule_a, 

curated_smiles_molecule_b) are parsed using RDKit to create graph structures where nodes 

represent atoms and edges represent bonds. Each molecule pair is enriched with pair-specific 

metadata (pair_type: dis2D, sim3D) for GAT analysis. 

Step 2: Node Feature Representation: Map each atom to a feature vector encoding chemical 

and physical parameters.Example Feature Vector for a Node (Atom): 

𝑓𝑖 = {𝐴𝑡𝑜𝑚 𝑇𝑦𝑝𝑒, 𝐻𝑦𝑏𝑟𝑖𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝐴𝑟𝑜𝑚𝑜𝑡𝑖𝑐𝑖𝑡𝑦,𝑉𝑒𝑙𝑎𝑛𝑐𝑒 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠, 𝐹𝑜𝑟𝑚𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒}   (1) 

Normalise the feature values for consistency. Also, Ensure node-level features 

represent the chemical context of each atom. 

Step 3: Adjacency Matrix Normalization: In the disappearing or bursting variations throughout 

training, the degree matrix (D) is applied to normalise the adjacency matrix (A). By 

guaranteeing consistent scaling of node embeddings throughout aggregation, that degree-

normalised adjacency matrix (A_norm) improves analysing security in GAT. 

Step 4: Edge Weight Assignment: Transferring weights to edges according to connection forms 

(single, double, and aromatic) and distance measurements (if 3D regulates are available) is 

known as edge weight assignment. To identify improved GAT analysis, this produces a 

weighted adjacency framework that emphasises scientifically essential relationships. 

Step 5: Reducing Noise: Reducing noise in molecular graphs involves using thresholding 

methods based on similarity scores and eliminating superfluous relationships from excessively 

dense graphs (tanimoto_cdk_Extended, TanimotoCombo). Essential node-edge relationships 

are preserved through graph sparsification, increasing the processing speed in GAT. 

2. Feature Extraction and Attention Mechanism  
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By dynamically allocating significance to nearby atoms via a system of attention, the 

technique seeks to capture significant interactions between particles and molecular 

relationships. To create current node visualisations, a node that includes matrices (𝑿)is first 

linearly transformed using a learnable weight matrix  (𝑊) as 𝐻 = 𝑊. 𝑋 Next, the formula that 

follows is used to determine the consideration parameters 𝑎𝑖𝑗 Between nearby molecules: 

𝑎𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑘]))𝑘∈𝑁(𝑖)
   (2) 

These coefficients represent the relative importance of neighbouring atoms and are 

used to aggregate information from neighbouring nodes as: 

ℎ𝑖
′ = ∑ 𝑎𝑖𝑗𝑊ℎ𝑗𝑗∈𝑁(𝑖)       (3) 

Finally, node-level embeddings are mapped to similarity metrics, such as 

tanimoto_cdk_Extended and TanimotoCombo, resulting in attention-weighted atomic feature 

representations for downstream molecular property prediction tasks. 

3. Multi-Head Attention Layer 

Utilising numerous focus heads to observe various molecule components and 

relationships, the Multi-Head Attention Layer Module strengthens the ability to express and 

durability of node representations of features. By themselves, every one consideration 

ultimately calculates scores for attention and gathers data from adjacent nodes in the following 

order: 

ℎ𝑖
(𝑘)

= ∑ 𝑎𝑖𝑗
(𝑘)

𝑊(𝑘)ℎ𝑗𝑗∈𝑁(𝑖)      (4) 

where 𝑘 represents the 𝑘-the attention head, 𝑎𝑖𝑗
(𝑘)

denotes the attention coefficient and 

𝑊(𝑘) Is the transformation matrix 𝑘 for the head? The outputs from all attention heads are then 

combined using concatenation: 

ℎ𝑖
′ = ‖𝑘ℎ𝑖

(𝑘)
       (5) 

In feature learning, non-linear activation functions (like ReLU or ELU) are used. 

Dropout regularisation is then used to avoid overfitting. For subsequent prediction tasks, the 

ultimate multi-head aggregated atomic embedded data are enhanced with target-specific data, 

connecting them to biological targets such as HERG and CYP2D6. 

b. Prediction Graph Attention Network 

The Forecasting and Production Module can do precisely that by mapping the multi-

head aggregated node placements to specific task outputs, such as attaching affinities, target 

conversations, or molecule resemblance scores. A fully interconnected layer after layer applies 

to a softmax stimulation for the classification process and refines the embedded data using an 

accessible weight matrix.𝑊′ : 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊′𝐻′)      (6) 

Regression tasks, predicting scores for similarity (e.g., TanimotoCombo, 

pchembl_distance), are performed with a linear output layer. Gradient descent is applied to 

optimise task-specific loss functions, such as Cross-Entropy Loss for task classification (e.g., 

target interaction with CYP2D6 or HERG) or Mean Squared Error (MSE) for comparison 

scores. Expected similarity ratings, target classifications, and assessment measurements like 
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RMSE, Accuracy, and F1-score are all output by the module, guaranteeing precise and 

understandable predictions. 

4. Result and Discussion  
a. Regression metrics 

Here's a table summarising the regression metrics (MSE, RMSE, PCC) across the four 

models (GAT, HNN, GNN, HGE) based on the code: 

Table 1: Comparison Table for regression metrics 

Metrics GAT HNN GNN HGE 

MSE 0.15 0.18 0.20 0.22 

RMSE 0.39 0.42 0.45 0.48 

PCC 0.85 0.82 0.75 0.72 

According to molecular graph predictions, the table contrasts four models' regression 

model performance metrics (MSE, RMSE, PCC) (GAT, HNN, GNN, and HGE). Through the 

highest correlation (PCC: 0.85) and the least error values (MSE: 0.15, RMSE: 0.39), GAT 

performs better than the other models. It demonstrates GAT's exceptional predicting 

performance and accuracy for the defined information set. 

 

Figure 3: Comparison graph for regression metrics 

The program uses an organised bar plot to compare the results of four models (GAT, 

HNN, GNN, and HGE) by visualising regression analysis metrics (MSE, RMSE, and PCC). 

Values have been noted on the bars for simplicity; each metric is represented in a different 

colour. The metric system values between 0 and 1 are shown on the Y-axis, guaranteeing 

consistent comparisons between models. 

b. Graph–level metrics (Structural Representation of molecular graph) 

Here's a table representation of the metric values used in the code for the models HNN, 

GNN, and HGE: 

Table 2: Comparison Table for Graph-level  metrics 
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Metrics GAT HNN GNN HGE 

Graph Connectivity 

Index 

 

0.89 0.78 0.85 0.92 

Edge Prediction 

Accuracy 

 

0.90 0.82 0.88 0.94 

Graph Sparsity Ratio 

 

0.75 0.65 0.72 0.80 

Three graph-level metrics—Graph Connectivity Index, Edge Prediction Accuracy, and 

Graph Sparsity Ratio—are used in the table to compare the performance of four models: HNN, 

GNN, HGE, and the suggested GAT model. These metrics measure each model's ability to 

predict edges, represent molecular bonds, and preserve effective graph structures. More 

excellent scores in every metric signify better performance, and the GAT model performs 

competitively, particularly in accuracy and connectivity. 

 

Figure 4: Comparison graph for graph Performance metrics 

The graph Connectivity Index, Edge Prediction Precision, and Graph Sparsity Ratio 

are graph-level efficiency metrics compared for three models (HNN, GNN, and HGE) 

employing an organised bar diagram. The metric values are initialised in a dictionary, and 

numpy is used to calculate each metric's position for correct X-axis alignment. A horizontal line 

is plotted for every model with an offset based on the bar width to ensure a clear separation 

between models. The performance of the models is visually compared across the chosen metrics 

in the chart, which is displayed using plt.show() and has labels, a grid, and a legend added for 

improved readability. 

5. Conclusion  
Deep learning (DL) is still transforming machine learning and growing disciplines such 

as physics, chemistry, and biology with frameworks including CNNs, RNNs, Transformers, 

GANs, and Capsule Networks. The efficiency and versatility of the model have been greatly 

improved by incorporating complicated training methods, such as extensive reinforcement 

learning, federated training, and self-monitored learning. However, problems with 

interpretability, data privacy, and computation resource requirements still exist. Future 

improvements might concentrate on creating less energy architectures, enhancing model 

transparency, and honing federated and self-supervised learning techniques. Furthermore, 

expanding cross-domain applications and incorporating hybrid AI models that combine DL and 
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symbolic reasoning will pave the way for more effective and efficient solutions to challenging 

real-world issues. 
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